Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
J Crit Care ; 77: 154318, 2023 May 09.
Article in English | MEDLINE | ID: covidwho-2318568

ABSTRACT

PURPOSE: To determine its cumulative incidence, identify the risk factors associated with Major Adverse Cardiovascular Events (MACE) development, and its impact clinical outcomes. MATERIALS AND METHODS: This multinational, multicentre, prospective cohort study from the ISARIC database. We used bivariate and multivariate logistic regressions to explore the risk factors related to MACE development and determine its impact on 28-day and 90-day mortality. RESULTS: 49,479 patients were included. Most were male 63.5% (31,441/49,479) and from high-income countries (84.4% [42,774/49,479]); however, >6000 patients were registered in low-and-middle-income countries. MACE cumulative incidence during their hospital stay was 17.8% (8829/49,479). The main risk factors independently associated with the development of MACE were older age, chronic kidney disease or cardiovascular disease, smoking history, and requirement of vasopressors or invasive mechanical ventilation at admission. The overall 28-day and 90-day mortality were higher among patients who developed MACE than those who did not (63.1% [5573/8829] vs. 35.6% [14,487/40,650] p < 0.001; 69.9% [6169/8829] vs. 37.8% [15,372/40,650] p < 0.001, respectively). After adjusting for confounders, MACE remained independently associated with higher 28-day and 90-day mortality (Odds Ratio [95% CI], 1.36 [1.33-1.39];1.47 [1.43-1.50], respectively). CONCLUSIONS: Patients with severe COVID-19 frequently develop MACE, which is independently associated with worse clinical outcomes.

2.
Int J Cardiol ; 383: 75-81, 2023 07 15.
Article in English | MEDLINE | ID: covidwho-2308603

ABSTRACT

BACKGROUND AND AIMS: Acute infections cause relevant activation of innate immunity and inflammatory cascade. An excessive response against pathogens has been proved to trigger the pathophysiological process of thrombo-inflammation. Nevertheless, an association between the use of antithrombotic agents and the outcome of critically ill patients with infectious diseases is lacking. The aim of this meta-analysis is to determine the impact of antithrombotic treatment on survival of patients with acute infective disease. METHODS: MEDLINE, Embase, Cinahl, Web of Science and Cochrane Central Register of Controlled Trials (CENTRAL) databases were systematically searched from inception to March 2021. We included randomized controlled trials (RCTs) that evaluated any antithrombotic agent in patients with infectious diseases other than COVID-19. Two authors independently performed study selection, data extraction and risk of bias evaluation. The primary outcome was all-cause mortality. Summary estimates for mortality were calculated using the inverse-variance random-effects method. RESULTS: A total of 16,588 patients participating in 18 RCTs were included, of whom 2141 died. Four trials evaluated therapeutic-dose anticoagulation, 1 trial prophylactic-dose anticoagulation, 4 trials aspirin, and 9 trials other antithrombotic agents. Overall, the use of antithrombotic agents was not associated with all-cause mortality (relative risk 0.96; 95% confidence interval, 0.90-1.03). CONCLUSIONS: The use of antithrombotics is not associated with all-cause mortality in patients with infectious disease other than COVID-19. Complex pathophysiological interplays between inflammatory and thrombotic pathways may explain these results and need further investigation. REGISTRATION: PROSPERO, CRD42021241182.


Subject(s)
COVID-19 , Fibrinolytic Agents , Humans , Anticoagulants/adverse effects , Aspirin , Fibrinolytic Agents/therapeutic use , Randomized Controlled Trials as Topic
3.
Pilot Feasibility Stud ; 9(1): 58, 2023 Apr 13.
Article in English | MEDLINE | ID: covidwho-2301092

ABSTRACT

BACKGROUND: Informed consent is critical to the ethical conduct of clinical research and requires understanding of a trial including its purpose, process, potential risks and benefits, and alternatives to participation. This can be challenging for complex trials, such as platform trials, and in high-stress environments, such as the intensive care unit (ICU). REMAP-CAP (randomized, embedded, multifactorial, adaptive platform trial for community-acquired pneumonia) is a platform trial which studies treatments for ICU patients with community-acquired pneumonia, including COVID-19. Patient/family partners (PFP) identified challenges during the REMAP-CAP consent process. METHODS: This is a patient-centred co-design study to refine and test an infographic to supplement current REMAP-CAP consent documents. Infographic prototypes were developed by patients, substitute decision-makers (SDMs), and researchers with lived experience in the ICU or with ICU research. We will apply a two-phase exploratory sequential, mixed-methods research design. In phase 1, we will conduct focus groups with ICU patients, SDMs, and research coordinators (RCs). We will use inductive content analysis to inform infographic refinement, to be pilot tested in phase 2. Phase 2 is a prospective study within a trial (SWAT) at ≤ 5 REMAP-CAP sites. We will collect self-reported data from patients/SDMs and RCs. The primary outcome is feasibility (eligible consent encounters, receipt of infographic, consent to follow-up, completion of follow-up surveys). Data will be integrated to understand if/how quantitative results build upon the qualitatively informed infographic. DISCUSSION: Phase 1 results will be used to co-design an infographic, directly informed by the perspectives of patients, SDMs, and RCs involved in ICU research consent discussions. Results from phase 2 will determine the feasibility of infographic implementation in REMAP-CAP consent encounters. These feasibility data will inform a larger SWAT to evaluate our consent infographic. If successful, use of a co-designed infographic to support REMAP-CAP consent documents may improve the experience of consent for patients, SDMs, and RCs. TRIAL REGISTRATION: The Northern Ireland Hub for Trials Methodology Research SWAT Repository (SWAT no. 176).

4.
JAMA ; 329(1): 39-51, 2023 01 03.
Article in English | MEDLINE | ID: covidwho-2287001

ABSTRACT

Importance: The longer-term effects of therapies for the treatment of critically ill patients with COVID-19 are unknown. Objective: To determine the effect of multiple interventions for critically ill adults with COVID-19 on longer-term outcomes. Design, Setting, and Participants: Prespecified secondary analysis of an ongoing adaptive platform trial (REMAP-CAP) testing interventions within multiple therapeutic domains in which 4869 critically ill adult patients with COVID-19 were enrolled between March 9, 2020, and June 22, 2021, from 197 sites in 14 countries. The final 180-day follow-up was completed on March 2, 2022. Interventions: Patients were randomized to receive 1 or more interventions within 6 treatment domains: immune modulators (n = 2274), convalescent plasma (n = 2011), antiplatelet therapy (n = 1557), anticoagulation (n = 1033), antivirals (n = 726), and corticosteroids (n = 401). Main Outcomes and Measures: The main outcome was survival through day 180, analyzed using a bayesian piecewise exponential model. A hazard ratio (HR) less than 1 represented improved survival (superiority), while an HR greater than 1 represented worsened survival (harm); futility was represented by a relative improvement less than 20% in outcome, shown by an HR greater than 0.83. Results: Among 4869 randomized patients (mean age, 59.3 years; 1537 [32.1%] women), 4107 (84.3%) had known vital status and 2590 (63.1%) were alive at day 180. IL-6 receptor antagonists had a greater than 99.9% probability of improving 6-month survival (adjusted HR, 0.74 [95% credible interval {CrI}, 0.61-0.90]) and antiplatelet agents had a 95% probability of improving 6-month survival (adjusted HR, 0.85 [95% CrI, 0.71-1.03]) compared with the control, while the probability of trial-defined statistical futility (HR >0.83) was high for therapeutic anticoagulation (99.9%; HR, 1.13 [95% CrI, 0.93-1.42]), convalescent plasma (99.2%; HR, 0.99 [95% CrI, 0.86-1.14]), and lopinavir-ritonavir (96.6%; HR, 1.06 [95% CrI, 0.82-1.38]) and the probabilities of harm from hydroxychloroquine (96.9%; HR, 1.51 [95% CrI, 0.98-2.29]) and the combination of lopinavir-ritonavir and hydroxychloroquine (96.8%; HR, 1.61 [95% CrI, 0.97-2.67]) were high. The corticosteroid domain was stopped early prior to reaching a predefined statistical trigger; there was a 57.1% to 61.6% probability of improving 6-month survival across varying hydrocortisone dosing strategies. Conclusions and Relevance: Among critically ill patients with COVID-19 randomized to receive 1 or more therapeutic interventions, treatment with an IL-6 receptor antagonist had a greater than 99.9% probability of improved 180-day mortality compared with patients randomized to the control, and treatment with an antiplatelet had a 95.0% probability of improved 180-day mortality compared with patients randomized to the control. Overall, when considered with previously reported short-term results, the findings indicate that initial in-hospital treatment effects were consistent for most therapies through 6 months.


Subject(s)
COVID-19 , Adult , Humans , Female , Middle Aged , Male , Lopinavir/therapeutic use , Ritonavir/therapeutic use , Follow-Up Studies , Hydroxychloroquine/therapeutic use , SARS-CoV-2 , Critical Illness/therapy , Bayes Theorem , COVID-19 Serotherapy , Adrenal Cortex Hormones/therapeutic use , Anticoagulants/adverse effects , Receptors, Interleukin-6
5.
J Clin Epidemiol ; 157: 1-12, 2023 05.
Article in English | MEDLINE | ID: covidwho-2276593

ABSTRACT

OBJECTIVES: Adaptive platforms allow for the evaluation of multiple interventions at a lower cost and have been growing in popularity, especially during the COVID-19 pandemic. The objective of this review is to summarize published platform trials, examine specific methodological design features among these studies, and hopefully aid readers in the evaluation and interpretation of platform trial results. METHODS: We performed a systematic review of EMBASE, MEDLINE, Cochrane Central Register of Controlled Trials (CENTRAL), and clinicaltrials.gov from January 2015 to January 2022 for protocols or results of platform trials. Pairs of reviewers, working independently and in duplicate, collected data on trial characteristics of trial registrations, protocols, and publications of platform trials. We reported our results using total numbers and percentages, as well as medians with interquartile range (IQR) when appropriate. RESULTS: We identified 15,277 unique search records and screened 14,403 titles and abstracts after duplicates were removed. We identified 98 unique randomized platform trials. Sixteen platform trials were sourced from a systematic review completed in 2019, which included platform trials reported prior to 2015. Most platform trials (n = 67, 68.3%) were registered between 2020 and 2022, coinciding with the COVID-19 pandemic. The included platform trials primarily recruited or plan to recruit patients from North America or Europe, with most subjects being recruited from the United States (n = 39, 39.7%) and the United Kingdom (n = 31, 31.6%). Bayesian methods were used in 28.6% (n = 28) of platform RCTs and frequentist methods in 66.3% (n = 65) of trials, including 1 (1%) that used methods from both paradigms. Out of the twenty-five trials with peer-reviewed publication of results, seven trials used Bayesian methods (28%), and of those, two (8%) used a predefined sample size calculation while the remainder used pre-specified probabilities of futility, harm, or benefit calculated at (pre-specified) intervals to inform decisions about stopping interventions or the entire trial. Seventeen (68%) peer-reviewed publications used frequentist methods. Out of the seven published Bayesian trials, seven (100%) reported thresholds for benefit. The threshold for benefit ranged from 80% to >99%. CONCLUSION: We identified and summarized key components of platform trials, including the basics of the methodological and statistical considerations. Ultimately, improving standardization and reporting in platform trials require an understanding of the current landscape. We provide the most updated and rigorous review of platform trials to date.


Subject(s)
COVID-19 , Pandemics , Humans , Bayes Theorem , COVID-19/epidemiology , Europe , United Kingdom
6.
Influenza Other Respir Viruses ; 16(6): 1040-1050, 2022 11.
Article in English | MEDLINE | ID: covidwho-2251375

ABSTRACT

Introduction: Case definitions are used to guide clinical practice, surveillance and research protocols. However, how they identify COVID-19-hospitalised patients is not fully understood. We analysed the proportion of hospitalised patients with laboratory-confirmed COVID-19, in the ISARIC prospective cohort study database, meeting widely used case definitions. Methods: Patients were assessed using the Centers for Disease Control (CDC), European Centre for Disease Prevention and Control (ECDC), World Health Organization (WHO) and UK Health Security Agency (UKHSA) case definitions by age, region and time. Case fatality ratios (CFRs) and symptoms of those who did and who did not meet the case definitions were evaluated. Patients with incomplete data and non-laboratory-confirmed test result were excluded. Results: A total of 263,218 of the patients (42%) in the ISARIC database were included. Most patients (90.4%) were from Europe and Central Asia. The proportions of patients meeting the case definitions were 56.8% (WHO), 74.4% (UKHSA), 81.6% (ECDC) and 82.3% (CDC). For each case definition, patients at the extremes of age distribution met the criteria less frequently than those aged 30 to 70 years; geographical and time variations were also observed. Estimated CFRs were similar for the patients who met the case definitions. However, when more patients did not meet the case definition, the CFR increased. Conclusions: The performance of case definitions might be different in different regions and may change over time. Similarly concerning is the fact that older patients often did not meet case definitions, risking delayed medical care. While epidemiologists must balance their analytics with field applicability, ongoing revision of case definitions is necessary to improve patient care through early diagnosis and limit potential nosocomial spread.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Prospective Studies , Hospitalization , Europe/epidemiology , Hospitals
7.
Lancet Respir Med ; 11(5): 453-464, 2023 05.
Article in English | MEDLINE | ID: covidwho-2249489

ABSTRACT

BACKGROUND: Interpretation of the evidence from randomised controlled trials (RCTs) of remdesivir in patients treated in hospital for COVID-19 is conflicting. We aimed to assess the benefits and harms of remdesivir compared with placebo or usual care in these patients, and whether treatment effects differed between prespecified patient subgroups. METHODS: For this systematic review and meta-analysis, we searched PubMed, Embase, the Cochrane COVID-19 trial registry, ClinicalTrials.gov, the International Clinical Trials Registry Platform, and preprint servers from Jan 1, 2020, until April 11, 2022, for RCTs of remdesivir in adult patients hospitalised with COVID-19, and contacted the authors of eligible trials to request individual patient data. The primary outcome was all-cause mortality at day 28 after randomisation. We used multivariable hierarchical regression-adjusting for respiratory support, age, and enrollment period-to investigate effect modifiers. This study was registered with PROSPERO, CRD42021257134. FINDINGS: Our search identified 857 records, yielding nine RCTs eligible for inclusion. Of these nine eligible RCTs, individual data were provided for eight, covering 10 480 patients hospitalised with COVID-19 (99% of such patients included in such RCTs worldwide) recruited between Feb 6, 2020, and April 1, 2021. Within 28 days of randomisation, 662 (12·5%) of 5317 patients assigned to remdesivir and 706 (14·1%) of 5005 patients assigned to no remdesivir died (adjusted odds ratio [aOR] 0·88, 95% CI 0·78-1·00, p=0·045). We found evidence for a credible subgroup effect according to respiratory support at baseline (pinteraction=0·019). Of patients who were ventilated-including those who received high-flow oxygen-253 (30·0%) of 844 patients assigned to remdesivir died compared with 241 (28·5%) of 846 patients assigned to no remdesivir (aOR 1·10 [0·88-1·38]; low-certainty evidence). Of patients who received no oxygen or low-flow oxygen, 409 (9·1%) of 4473 patients assigned to remdesivir died compared with 465 (11·2%) of 4159 patients assigned to no remdesivir (0·80 [0·70-0·93]; high-certainty evidence). No credible subgroup effect was found for time to start of remdesivir after symptom onset, age, presence of comorbidities, enrolment period, or corticosteroid use. Remdesivir did not increase the frequency of severe or serious adverse events. INTERPRETATION: This individual patient data meta-analysis showed that remdesivir reduced mortality in patients hospitalised with COVID-19 who required no or conventional oxygen support, but was underpowered to evaluate patients who were ventilated when receiving remdesivir. The effect size of remdesivir in patients with more respiratory support or acquired immunity and the cost-effectiveness of remdesivir remain to be further elucidated. FUNDING: EU-RESPONSE.


Subject(s)
COVID-19 , Adult , Humans , COVID-19 Drug Treatment
8.
Lancet Respir Med ; 11(1): e5-e6, 2023 01.
Article in English | MEDLINE | ID: covidwho-2170710
9.
BMJ Paediatr Open ; 6(1)2022 10.
Article in English | MEDLINE | ID: covidwho-2153006

ABSTRACT

BACKGROUND: The impact of the COVID-19 pandemic on paediatric populations varied between high-income countries (HICs) versus low-income to middle-income countries (LMICs). We sought to investigate differences in paediatric clinical outcomes and identify factors contributing to disparity between countries. METHODS: The International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC) COVID-19 database was queried to include children under 19 years of age admitted to hospital from January 2020 to April 2021 with suspected or confirmed COVID-19 diagnosis. Univariate and multivariable analysis of contributing factors for mortality were assessed by country group (HICs vs LMICs) as defined by the World Bank criteria. RESULTS: A total of 12 860 children (3819 from 21 HICs and 9041 from 15 LMICs) participated in this study. Of these, 8961 were laboratory-confirmed and 3899 suspected COVID-19 cases. About 52% of LMICs children were black, and more than 40% were infants and adolescent. Overall in-hospital mortality rate (95% CI) was 3.3% [=(3.0% to 3.6%), higher in LMICs than HICs (4.0% (3.6% to 4.4%) and 1.7% (1.3% to 2.1%), respectively). There were significant differences between country income groups in intervention profile, with higher use of antibiotics, antivirals, corticosteroids, prone positioning, high flow nasal cannula, non-invasive and invasive mechanical ventilation in HICs. Out of the 439 mechanically ventilated children, mortality occurred in 106 (24.1%) subjects, which was higher in LMICs than HICs (89 (43.6%) vs 17 (7.2%) respectively). Pre-existing infectious comorbidities (tuberculosis and HIV) and some complications (bacterial pneumonia, acute respiratory distress syndrome and myocarditis) were significantly higher in LMICs compared with HICs. On multivariable analysis, LMIC as country income group was associated with increased risk of mortality (adjusted HR 4.73 (3.16 to 7.10)). CONCLUSION: Mortality and morbidities were higher in LMICs than HICs, and it may be attributable to differences in patient demographics, complications and access to supportive and treatment modalities.


Subject(s)
COVID-19 , Tuberculosis , Adolescent , Humans , Child , COVID-19 Testing , Pandemics , COVID-19/epidemiology , COVID-19/therapy , Health Resources
10.
BMC Nurs ; 21(1): 330, 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2139267

ABSTRACT

BACKGROUND: Recent pandemics have provided important lessons to inform planning for public health emergencies. Despite these lessons, gaps in implementation during the COVID-19 pandemic are evident. Additionally, research to inform interventions to support the needs of front-line nurses during a prolonged pandemic are lacking. We aimed to gain an understanding of critical care nurses' perspectives of the ongoing pandemic, including their opinions of their organization and governments response to the pandemic, to inform interventions to improve the response to the current and future pandemics. METHODS: This sub-study is part of a cross-sectional online survey distributed to Canadian critical care nurses at two time points during the pandemic (March-May 2020; April-May 2021). We employed a qualitative descriptive design comprised of three open-ended questions to provide an opportunity for participants to share perspectives not specifically addressed in the main survey. Responses were analyzed using conventional content analysis. RESULTS: One hundred nine of the 168 (64.9%) participants in the second survey responded to the open-ended questions. While perspectives about effectiveness of both their organization's and the government's responses to the pandemic were mixed, most noted that inconsistent and unclear communication made it difficult to trust the information provided. Several participants who had worked during previous pandemics noted that their organization's COVID-19 response failed to incorporate lessons from these past experiences. Many respondents reported high levels of burnout and moral distress that negatively affected both their professional and personal lives. Despite these experiences, several respondents noted that support from co-workers had helped them to cope with the stress and challenges. CONCLUSION: One year into the pandemic, critical care nurses' lived experiences continue to reflect previously identified challenges and opportunities for improvement in pandemic preparedness and response. These findings suggest that lessons from the current and prior pandemics have been inadequately considered in the COVID-19 response. Incorporation of these perspectives into interventions to improve the health system response, and support the needs of critical care nurses is essential to fostering a resilient health workforce. Research to understand the experience of other front-line workers and to learn from more and less successful interventions, and leaders, is needed.

12.
BMJ paediatrics open ; 6(1), 2022.
Article in English | EuropePMC | ID: covidwho-2092727

ABSTRACT

Background The impact of the COVID-19 pandemic on paediatric populations varied between high-income countries (HICs) versus low-income to middle-income countries (LMICs). We sought to investigate differences in paediatric clinical outcomes and identify factors contributing to disparity between countries. Methods The International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC) COVID-19 database was queried to include children under 19 years of age admitted to hospital from January 2020 to April 2021 with suspected or confirmed COVID-19 diagnosis. Univariate and multivariable analysis of contributing factors for mortality were assessed by country group (HICs vs LMICs) as defined by the World Bank criteria. Results A total of 12 860 children (3819 from 21 HICs and 9041 from 15 LMICs) participated in this study. Of these, 8961 were laboratory-confirmed and 3899 suspected COVID-19 cases. About 52% of LMICs children were black, and more than 40% were infants and adolescent. Overall in-hospital mortality rate (95% CI) was 3.3% [=(3.0% to 3.6%), higher in LMICs than HICs (4.0% (3.6% to 4.4%) and 1.7% (1.3% to 2.1%), respectively). There were significant differences between country income groups in intervention profile, with higher use of antibiotics, antivirals, corticosteroids, prone positioning, high flow nasal cannula, non-invasive and invasive mechanical ventilation in HICs. Out of the 439 mechanically ventilated children, mortality occurred in 106 (24.1%) subjects, which was higher in LMICs than HICs (89 (43.6%) vs 17 (7.2%) respectively). Pre-existing infectious comorbidities (tuberculosis and HIV) and some complications (bacterial pneumonia, acute respiratory distress syndrome and myocarditis) were significantly higher in LMICs compared with HICs. On multivariable analysis, LMIC as country income group was associated with increased risk of mortality (adjusted HR 4.73 (3.16 to 7.10)). Conclusion Mortality and morbidities were higher in LMICs than HICs, and it may be attributable to differences in patient demographics, complications and access to supportive and treatment modalities.

13.
CMAJ Open ; 10(3): E807-E817, 2022.
Article in English | MEDLINE | ID: covidwho-2090865

ABSTRACT

BACKGROUND: The role of remdesivir in the treatment of hospitalized patients with COVID-19 remains ill-defined. We conducted a cost-effectiveness analysis alongside the Canadian Treatments for COVID-19 (CATCO) open-label, randomized clinical trial evaluating remdesivir. METHODS: Patients with COVID-19 in Canadian hospitals from Aug. 14, 2020, to Apr. 1, 2021, were randomly assigned to receive remdesivir plus usual care versus usual care alone. Taking a public health care payer's perspective, we collected in-hospital outcomes and health care resource utilization alongside estimated unit costs in 2020 Canadian dollars over a time horizon from randomization to hospital discharge or death. Data from 1281 adults admitted to 52 hospitals in 6 Canadian provinces were analyzed. RESULTS: The total mean cost per patient was $37 918 (standard deviation [SD] $42 413; 95% confidence interval [CI] $34 617 to $41 220) for patients randomly assigned to the remdesivir group and $38 026 (SD $46 021; 95% CI $34 480 to $41 573) for patients receiving usual care (incremental cost -$108 [95% CI -$4953 to $4737], p > 0.9). The difference in proportions of in-hospital deaths between remdesivir and usual care groups was -3.9% (18.7% v. 22.6%, 95% CI -8.3% to 1.0%, p = 0.09). The difference in proportions of incident invasive mechanical ventilation events between groups was -7.0% (8.0% v. 15.0%, 95% CI -10.6% to -3.4%, p = 0.006), whereas the difference in proportions of total mechanical ventilation events between groups was -5.7% (16.4% v. 22.1%, 95% CI -10.0% to -1.4%, p = 0.01). Remdesivir was the dominant intervention (but only marginally less costly, with mildly lower mortality) with an incalculable incremental cost effectiveness ratio; we report results of incremental costs and incremental effects separately. For willingness-to-pay thresholds of $0, $20 000, $50 000 and $100 000 per death averted, a strategy using remdesivir was cost-effective in 60%, 67%, 74% and 79% of simulations, respectively. The remdesivir costs were the fifth highest cost driver, offset by shorter lengths of stay and less mechanical ventilation. INTERPRETATION: From a health care payer perspective, treating patients hospitalized with COVID-19 with remdesivir and usual care appears to be preferrable to treating with usual care alone, albeit with marginal incremental cost and small clinical effects. The added cost of remdesivir was offset by shorter lengths of stay in the intensive care unit and less need for ventilation. STUDY REGISTRATION: ClinicalTrials. gov, no. NCT04330690.


Subject(s)
COVID-19 Drug Treatment , Adenosine Monophosphate/analogs & derivatives , Adult , Alanine/analogs & derivatives , Canada , Cost-Benefit Analysis , Humans
14.
BMJ Open ; 12(10): e063436, 2022 10 12.
Article in English | MEDLINE | ID: covidwho-2064166

ABSTRACT

OBJECTIVE: A deep understanding of the relationship between a scarce drug's dose and clinical response is necessary to appropriately distribute a supply-constrained drug along these lines. SUMMARY OF KEY DATA: The vast majority of drug development and repurposing during the COVID-19 pandemic - an event that has made clear the ever-present scarcity in healthcare systems -has been ignorant of scarcity and dose optimisation's ability to help address it. CONCLUSIONS: Future pandemic clinical trials systems should obtain dose optimisation data, as these appear necessary to enable appropriate scarce resource allocation according to societal values.


Subject(s)
COVID-19 , Pandemics , Delivery of Health Care , Health Care Rationing , Humans
15.
Canadian Journal of Critical Care Nursing ; 33(2):14-23, 2022.
Article in English | CINAHL | ID: covidwho-2056157

ABSTRACT

Background: Nurses are key healthcare workers whose adherence to infection prevention and control (IPC) measures is integral to the prevention of nosocomial spread of SARS-COV-2. Institutional trust is an important correlate of adherence. After initially surveying nurses early in 2020, we sought to evaluate how perceptions of IPC measures and institutional trust changed one year into the pandemic. Methods: We adapted an internationally distributed cross-sectional questionnaire, incorporating validated scales for items including institutional trust, and distributed it by email and Slack via the Canadian Association of Critical Care Nurses between April 29 and May 28, 2021. We evaluated adherence to IPC protocols, barriers and facilitators to IPC guideline adherence, and respondents’ level of institutitonal trust and compared results across the two time periods. Results: 141 nurses responded to the survey. In 2021, respondents reported lower rates of fear of becoming ill and providing care for patients with COVID-19 (T = 3.83, p = < 0.001). They reported higher levels of skill (T = 3.57, p < 0.001) and continued to report similarly high levels of professional expectations compared to 2020 (T = 0.85, p = 0.39). However, institutional trust dropped in 2021 (T = 4.31, p < 0.001), particularly in national and regional governmental trust. Interpretation: Respondents demonstrated less trust in national and regional governments compared to respondents in 2020, although they reported less overall concern for themselves and their families, and higher skills and knowledge around IPC procedures. Canadian nurses continue to have strong beliefs in the utility of PPE and IPC procedures, and strong social and professional expectations to adhere to IPC measures.

16.
Elife ; 112022 10 05.
Article in English | MEDLINE | ID: covidwho-2056253

ABSTRACT

Background: Whilst timely clinical characterisation of infections caused by novel SARS-CoV-2 variants is necessary for evidence-based policy response, individual-level data on infecting variants are typically only available for a minority of patients and settings. Methods: Here, we propose an innovative approach to study changes in COVID-19 hospital presentation and outcomes after the Omicron variant emergence using publicly available population-level data on variant relative frequency to infer SARS-CoV-2 variants likely responsible for clinical cases. We apply this method to data collected by a large international clinical consortium before and after the emergence of the Omicron variant in different countries. Results: Our analysis, that includes more than 100,000 patients from 28 countries, suggests that in many settings patients hospitalised with Omicron variant infection less often presented with commonly reported symptoms compared to patients infected with pre-Omicron variants. Patients with COVID-19 admitted to hospital after Omicron variant emergence had lower mortality compared to patients admitted during the period when Omicron variant was responsible for only a minority of infections (odds ratio in a mixed-effects logistic regression adjusted for likely confounders, 0.67 [95% confidence interval 0.61-0.75]). Qualitatively similar findings were observed in sensitivity analyses with different assumptions on population-level Omicron variant relative frequencies, and in analyses using available individual-level data on infecting variant for a subset of the study population. Conclusions: Although clinical studies with matching viral genomic information should remain a priority, our approach combining publicly available data on variant frequency and a multi-country clinical characterisation dataset with more than 100,000 records allowed analysis of data from a wide range of settings and novel insights on real-world heterogeneity of COVID-19 presentation and clinical outcome. Funding: Bronner P. Gonçalves, Peter Horby, Gail Carson, Piero L. Olliaro, Valeria Balan, Barbara Wanjiru Citarella, and research costs were supported by the UK Foreign, Commonwealth and Development Office (FCDO) and Wellcome [215091/Z/18/Z, 222410/Z/21/Z, 225288/Z/22/Z]; and Janice Caoili and Madiha Hashmi were supported by the UK FCDO and Wellcome [222048/Z/20/Z]. Peter Horby, Gail Carson, Piero L. Olliaro, Kalynn Kennon and Joaquin Baruch were supported by the Bill & Melinda Gates Foundation [OPP1209135]; Laura Merson was supported by University of Oxford's COVID-19 Research Response Fund - with thanks to its donors for their philanthropic support. Matthew Hall was supported by a Li Ka Shing Foundation award to Christophe Fraser. Moritz U.G. Kraemer was supported by the Branco Weiss Fellowship, Google.org, the Oxford Martin School, the Rockefeller Foundation, and the European Union Horizon 2020 project MOOD (#874850). The contents of this publication are the sole responsibility of the authors and do not necessarily reflect the views of the European Commission. Contributions from Srinivas Murthy, Asgar Rishu, Rob Fowler, James Joshua Douglas, François Martin Carrier were supported by CIHR Coronavirus Rapid Research Funding Opportunity OV2170359 and coordinated out of Sunnybrook Research Institute. Contributions from Evert-Jan Wils and David S.Y. Ong were supported by a grant from foundation Bevordering Onderzoek Franciscus; and Andrea Angheben by the Italian Ministry of Health "Fondi Ricerca corrente-L1P6" to IRCCS Ospedale Sacro Cuore-Don Calabria. The data contributions of J.Kenneth Baillie, Malcolm G. Semple, and Ewen M. Harrison were supported by grants from the National Institute for Health Research (NIHR; award CO-CIN-01), the Medical Research Council (MRC; grant MC_PC_19059), and by the NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool in partnership with Public Health England (PHE) (award 200907), NIHR HPRU in Respiratory Infections at Imperial College London with PHE (award 200927), Liverpool Experimental Cancer Medicine Centre (grant C18616/A25153), NIHR Biomedical Research Centre at Imperial College London (award IS-BRC-1215-20013), and NIHR Clinical Research Network providing infrastructure support. All funders of the ISARIC Clinical Characterisation Group are listed in the appendix.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/virology , Humans , SARS-CoV-2/genetics
17.
Crit Care ; 26(1): 276, 2022 09 13.
Article in English | MEDLINE | ID: covidwho-2029728

ABSTRACT

BACKGROUND: Up to 30% of hospitalised patients with COVID-19 require advanced respiratory support, including high-flow nasal cannulas (HFNC), non-invasive mechanical ventilation (NIV), or invasive mechanical ventilation (IMV). We aimed to describe the clinical characteristics, outcomes and risk factors for failing non-invasive respiratory support in patients treated with severe COVID-19 during the first two years of the pandemic in high-income countries (HICs) and low middle-income countries (LMICs). METHODS: This is a multinational, multicentre, prospective cohort study embedded in the ISARIC-WHO COVID-19 Clinical Characterisation Protocol. Patients with laboratory-confirmed SARS-CoV-2 infection who required hospital admission were recruited prospectively. Patients treated with HFNC, NIV, or IMV within the first 24 h of hospital admission were included in this study. Descriptive statistics, random forest, and logistic regression analyses were used to describe clinical characteristics and compare clinical outcomes among patients treated with the different types of advanced respiratory support. RESULTS: A total of 66,565 patients were included in this study. Overall, 82.6% of patients were treated in HIC, and 40.6% were admitted to the hospital during the first pandemic wave. During the first 24 h after hospital admission, patients in HICs were more frequently treated with HFNC (48.0%), followed by NIV (38.6%) and IMV (13.4%). In contrast, patients admitted in lower- and middle-income countries (LMICs) were less frequently treated with HFNC (16.1%) and the majority received IMV (59.1%). The failure rate of non-invasive respiratory support (i.e. HFNC or NIV) was 15.5%, of which 71.2% were from HIC and 28.8% from LMIC. The variables most strongly associated with non-invasive ventilation failure, defined as progression to IMV, were high leukocyte counts at hospital admission (OR [95%CI]; 5.86 [4.83-7.10]), treatment in an LMIC (OR [95%CI]; 2.04 [1.97-2.11]), and tachypnoea at hospital admission (OR [95%CI]; 1.16 [1.14-1.18]). Patients who failed HFNC/NIV had a higher 28-day fatality ratio (OR [95%CI]; 1.27 [1.25-1.30]). CONCLUSIONS: In the present international cohort, the most frequently used advanced respiratory support was the HFNC. However, IMV was used more often in LMIC. Higher leucocyte count, tachypnoea, and treatment in LMIC were risk factors for HFNC/NIV failure. HFNC/NIV failure was related to worse clinical outcomes, such as 28-day mortality. Trial registration This is a prospective observational study; therefore, no health care interventions were applied to participants, and trial registration is not applicable.


Subject(s)
COVID-19 , Respiratory Insufficiency , COVID-19/therapy , Humans , Prospective Studies , Respiratory Insufficiency/therapy , SARS-CoV-2 , Tachypnea
18.
PLoS One ; 17(7): e0270668, 2022.
Article in English | MEDLINE | ID: covidwho-2021849

ABSTRACT

BACKGROUND: A recent prospective meta-analysis demonstrated that interleukin-6 antagonists are associated with lower all-cause mortality in hospitalised patients with COVID-19, compared with usual care or placebo. However, emerging evidence suggests that clinicians are favouring the use of tocilizumab over sarilumab. A new randomised comparison of these agents from the REMAP-CAP trial shows similar effects on in-hospital mortality. Therefore, we initiated a network meta-analysis, to estimate pairwise associations between tocilizumab, sarilumab and usual care or placebo with 28-day mortality, in COVID-19 patients receiving concomitant corticosteroids and ventilation, based on all available direct and indirect evidence. METHODS: Eligible trials randomised hospitalised patients with COVID-19 that compared tocilizumab or sarilumab with usual care or placebo in the prospective meta-analysis or that directly compared tocilizumab with sarilumab. Data were restricted to patients receiving corticosteroids and either non-invasive or invasive ventilation at randomisation. Pairwise associations between tocilizumab, sarilumab and usual care or placebo for all-cause mortality 28 days after randomisation were estimated using a frequentist contrast-based network meta-analysis of odds ratios (ORs), implementing multivariate fixed-effects models that assume consistency between the direct and indirect evidence. FINDINGS: One trial (REMAP-CAP) was identified that directly compared tocilizumab with sarilumab and supplied results on all-cause mortality at 28-days. This network meta-analysis was based on 898 eligible patients (278 deaths) from REMAP-CAP and 3710 eligible patients from 18 trials (1278 deaths) from the prospective meta-analysis. Summary ORs were similar for tocilizumab [0·82 [0·71-0·95, p = 0·008]] and sarilumab [0·80 [0·61-1·04, p = 0·09]] compared with usual care or placebo. The summary OR for 28-day mortality comparing tocilizumab with sarilumab was 1·03 [95%CI 0·81-1·32, p = 0·80]. The p-value for the global test of inconsistency was 0·28. CONCLUSIONS: Administration of either tocilizumab or sarilumab was associated with lower 28-day all-cause mortality compared with usual care or placebo. The association is not dependent on the choice of interleukin-6 receptor antagonist.


Subject(s)
COVID-19 Drug Treatment , Adrenal Cortex Hormones/therapeutic use , Antibodies, Monoclonal, Humanized , Humans , Network Meta-Analysis , Prospective Studies , Randomized Controlled Trials as Topic
19.
Pediatr Crit Care Med ; 21(11): 1023, 2020 11.
Article in English | MEDLINE | ID: covidwho-1383278
20.
Sci Data ; 9(1): 454, 2022 07 30.
Article in English | MEDLINE | ID: covidwho-1967615

ABSTRACT

The International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) COVID-19 dataset is one of the largest international databases of prospectively collected clinical data on people hospitalized with COVID-19. This dataset was compiled during the COVID-19 pandemic by a network of hospitals that collect data using the ISARIC-World Health Organization Clinical Characterization Protocol and data tools. The database includes data from more than 705,000 patients, collected in more than 60 countries and 1,500 centres worldwide. Patient data are available from acute hospital admissions with COVID-19 and outpatient follow-ups. The data include signs and symptoms, pre-existing comorbidities, vital signs, chronic and acute treatments, complications, dates of hospitalization and discharge, mortality, viral strains, vaccination status, and other data. Here, we present the dataset characteristics, explain its architecture and how to gain access, and provide tools to facilitate its use.


Subject(s)
COVID-19 , Hospitalization , Humans , Pandemics , Prospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL